November 2022
Research by Crop Science Centre scientists’ sheds light on the relationship between arbuscular mycorrhizal fungi and lateral root development in angiosperms.
Professor Uta Paszkowski, an author of this research, said “This is a significant clarification of the molecular mechanisms triggering cell division, thereby underpinning crop root system architectural plasticity in the ecosystem. This forms an important part in our wider ambition to improve the nutrition of crops sustainably.”
Published in the journal Current Biology, this research has four key findings: the initiation of new lateral root primordia, generic chitin as a potent stimulus of lateral root development, conserved MAMP receptors to perceive the chitin signals and the broadly conserved response across diverse angiosperms.
The ability of arbuscular mycorrhizal fungi to increase lateral root numbers in various plant species has been widely observed. This research reveals that the cause is increased initiation of cell division and lateral root primordia formation.
This is a significant clarification of the molecular mechanisms triggering cell division, thereby underpinning crop root system architectural plasticity in the ecosystem. This forms an important part in our wider ambition to improve the nutrition of crops sustainably.
Professor Uta Paszkowski
This enhanced lateral root development was thought to be activated by symbiosis relevant signals, such as LCOs or CO4. However, the authors of this research clarify that lateral root development is generic to diverse chitin-derived molecules. Furthermore, the authors present genetic evidence demonstrating a conserved lateral root developmental response to chitinaceous molecules across phylogenetically distant angiosperms, involving a dedicated set of MAMP receptors.
In a broader ecological and evolutionary context, the exact biological significance of this conserved response requires more investigation. The authors speculate that the detection process of chitinaceous molecules might facilitate the monitoring of the soil biota.
This pre-existing signalling pathway might be an ancestral feature of all plants engaging in nitrogen-fixing symbioses where diazotroph bacteria also employ chitinaceous LCOs to stimulate cell-division leading to nodule formation. This finding is therefore important for potential engineering of nitrogen fixation into cereal crops.
This research forms part of a wider programme to improve the sustainability of equity of global agriculture by reducing the need for inorganic fertilizer. This will be particularly beneficial for small-holder farmers in sub-Saharan Africa who do not have access to inorganic fertilisers to increase the yield of their crops.
Read the research in Current Biology by following this link Arbuscular mycorrhizal fungi induce lateral root development in angiosperms via a conserved set of MAMP receptors – ScienceDirect
News
October 2024
Precision breeding: legislation, applications, and implications for the UK
News
October 2024
Tania Chancellor awarded prestigious fellowship in technology transfer
News
October 2024
Dr Min-Yao Jhu selected as Assistant Features Editor for The Plant Cell
News
September 2024
CSC staff supporting 'Fungi Field Day' to promote public engagement with fungal science
News
September 2024
Sebastian Eves-van den Akker appointed Professor of Biotic Interactions
News
September 2024
Advancing global food security by harnessing AI and 3D printing to combat hidden crop killers
News
September 2024
Dr Ahmed Warsame joins Crop Science Centre as Research Fellow
News
September 2024
Olaf Kranse awarded King’s College Research Associate position for climate monitoring project
News
August 2024
Jen McGaley wins award for innovative mycorrhizal research at ICOM 2024
News
August 2024
Uncovering the effectorome: new insights into plant-parasitic nematode infection strategies
News
July 2024
The ancient role of ARK in plant-fungi partnerships revealed
News
July 2024
Next generation biosensor reveals gibberellin’s critical role in legume nitrogen-fixation – paving the way for more productive legume crops and self-fertilising cereals
By submitting this form, you are consenting to receive marketing emails from: The Crop Science Centre, Lawrence Weaver Rd, Cambridge, CB3 0LE, GB. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact.