7 March 2024
Tally I. C. Wright, Richard Horsnell, Bethany Love, Amanda J. Burridge, Keith A. Gardner, Robert Jackson, Fiona J. Leigh, Aleksander Ligeza, Sigrid Heuer, Alison R. Bentley & Philip Howell Tally I. C. Wright, Richard Horsnell, Bethany Love, Amanda J. Burridge, Keith A. Gardner, Robert Jackson, Fiona J. Leigh, Aleksander Ligeza, Sigrid Heuer, Alison R. Bentley & Philip Howell - Theoretical and Applied Genetics, 2024
The allelic richness harbored in progenitors of hexaploid bread wheat (Triticum aestivum L.) is a useful resource for addressing the genetic diversity bottleneck in modern cultivars. Synthetic hexaploid wheat (SHW) is created through resynthesis of the hybridisation events between the tetraploid (Triticum turgidum subsp. durum Desf.) and diploid (Aegilops tauschii Coss.) bread wheat progenitors. We developed a large and diverse winter wheat nested association mapping (NAM) population (termed the NIAB_WW_SHW_NAM) consisting of 3241 genotypes derived from 54 nested back-cross 1 (BC1) populations, each formed via back-crossing a different primary SHW into the UK winter wheat cultivar ‘Robigus’. The primary SHW lines were created using 15 T. durum donors and 47 Ae. tauschii accessions that spanned the lineages and geographical range of the species. Primary SHW parents were typically earlier flowering, taller and showed better resistance to yellow rust infection (Yr) than ‘Robigus’. The NIAB_WW_SHW_NAM population was genotyped using a single nucleotide polymorphism (SNP) array and 27 quantitative trait loci (QTLs) were detected for flowering time, plant height and Yr resistance. Across multiple field trials, a QTL for Yr resistance was found on chromosome 4D that corresponded to the Yr28 resistance gene previously reported in other SHW lines. These results demonstrate the value of the NIAB_WW_SHW_NAM population for genetic mapping and provide the first evidence of Yr28 working in current UK environments and genetic backgrounds. These examples, coupled with the evidence of commercial wheat breeders selecting promising genotypes, highlight the potential value of the NIAB_WW_SHW_NAM to variety improvement.
Read the entire publicationBy submitting this form, you are consenting to receive marketing emails from: The Crop Science Centre, Lawrence Weaver Rd, Cambridge, CB3 0LE, GB. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact.